The periodic boundary value problem for semilinear elastic beam equations: The resonance case

نویسندگان

  • Jinhai Chen
  • Donal O'Regan
چکیده

This paper discusses the existence of generalized solutions to periodic boundary value problems for semilinear elastic beam equations under a resonance condition. The argument presented makes use of the global inverse theorem and Galerkin’s method. c © 2007 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonlinear Vibration Analysis of an Euler-Bernoulli Beam Resting on a Nonlinear Elastic Foundation under Compressive Axial Force

This paper studies the nonlinear vibration analysis of a simply supported Euler-Bernoulli beam resting on a nonlinear elastic foundation under compressive axial load using nonlinear normal modes concept in the case of three-to-one (3:1) internal resonance. The beam’s governing nonlinear PDE of motion and also its boundary conditions are derived and then solved using the method of Multiple Time ...

متن کامل

Periodic Boundary Value Problems for Semilinear Fractional Differential Equations

We study the periodic boundary value problem for semilinear fractional differential equations in an ordered Banach space. The method of upper and lower solutions is then extended. The results on the existence of minimal and maximal mild solutions are obtained by using the characteristics of positive operators semigroup and the monotone iterative scheme. The results are illustrated by means of a...

متن کامل

Effect of the Multi Vibration Absorbers on the Nonlinear FG Beam Under Periodic Load with Various Boundary Conditions

A semi-analytical method is used to study the effects of the multi vibration absorbers on the nonlinear functionally graded (FG) Euler-Bernoulli beam subjected to periodic load. The material properties of the beam are assumed to be continuously graded in the thickness direction. The governing equations of functionally graded beam are obtained based on the Hamilton's principle and these equation...

متن کامل

A System of Semilinear Evolution Equations with Homogeneous Boundary Conditions for Thin Plates Coupled with Membranes

In this work we consider a semilinear initial boundary-value problem modelling an elastic thin plate (in the context of the so-called KirchhoffLove theory) coupled with an elastic membrane, regarding homogeneous boundary conditions. By means of the theory of strongly continuous semigroups of linear operators applied to abstract semilinear initial valued problems [16], we obtain existence and un...

متن کامل

Periodic boundary value problems for controlled nonlinear impulsive evolution equations on Banach spaces

This paper deals with the Periodic boundary value problems for Controlled nonlinear impulsive evolution equations. By using the theory of semigroup and fixed point methods, some conditions ensuring the existence and uniqueness. Finally, two examples are provided to demonstrate the effectiveness of the proposed results.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computers & Mathematics with Applications

دوره 53  شماره 

صفحات  -

تاریخ انتشار 2007